

Background in RF Noise Pollution

2013 Silicon Flatirons Conference

Radio Spectrum Pollution: Facing the Challenge of a Threatened Resource

2023 Silicon Flatirons Roundtable

- Invitation only
- Chatham House Rule
- Outcomes report: The Challenges of Radio Spectrum Pollution

Institute for Telecommunication Sciences

- Interference thresholds
- Aggregate interference measurement and modeling
- Radio Frequency Interference Monitoring System (RFIMS)
- Spectrum Monitoring

Outline

Introduction

2013 Conference Summary

Ten Years Later

Examples and Impacts

Recommendations

RF Spectrum Use is a Feature of Modern Life

Radar

Utilities

Radio Astronomy

RF Noise

RF Noise is believed to be a growing problem

- "radio communication services, both licensed and unlicensed, were entering a 'world of pain' due to increasing levels of radio frequency noise."
- Radio Astronomy (RA) is increasingly affected by RF noise²
 - Interference is increasingly coming from cellular systems and satellite communications
- Remote Sensing suffers degraded or lost data from RF noise²
 - · Wireless communications is degrading or destroying data

¹ Association of Federal Communications Consulting Engineers, Ex Parte Presentations in ET 16-191 and RM-11779, April 13, 2017

² National Academies Press, "Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses," 2015

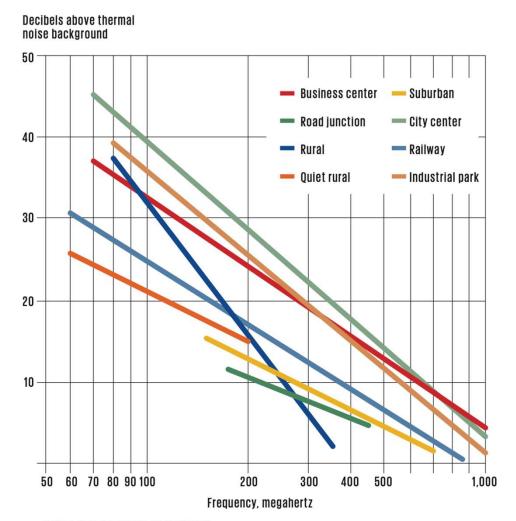
RF Noise Quantification

We don't know the extent of the problem

 No systematic study of RF noise in the U.S. has been made since the mid-70s¹

Representative studies

- Shared Spectrum Corporation (2010) surveyed 30 3000 MHz over 87 hours²
- McHenry et al surveyed 100 1500 MHz¹
- NTIA/ITS monitored 3.5 GHz activity on U.S. coast³
- NASCTN surveyed out-of-band and spurious emissions from AWS-3 base stations at 1755-1780 MHz; 2155 – 2180 MHz⁴


¹ M. A. McHenry, D. Roberson, and R. J. Matheson, "Phone to Fridge: Shut up!" IEEE Spectrum 52(9): 50-55 (2015)

² Shared Spectrum Company, "General survey of radio frequency bands – 30 MHz to 3 GHz," 2010

³ M.G. Cotton, L.P. Vu, B. Eales, A. Hicks, "3.45 – 3.65 Ghz Spectrum Occupancy from Long-Term Measurements in 2018 and 2019 at Four Coastal Sites," NTIA Technical Report TR-20-548, April 2020

⁴ M. Frey, et al, "Measured Emission Spectra of Selected AWS-3 LTE Transmitters," NASCTN Report 4, December 2017

RF Noise: Man-Made Electrical Noise

 "Man-made noise levels are much higher in cities] than in suburbs or out in the country because cities have a higher concentration of all forms of electrical equipment, computers and radios, and home appliances and systems, as well as industrial equipment"

Source: Mass Consultants Limited (2003)

Source: McHenry, M.A., et al, "Phone to Fridge:Shut Up!," IEEE Spectrum, Sept. 2015

Outline

Introduction

2013 Conference Summary

Ten Years Later

Examples and Impacts

Recommendations

2013 Conference Summary (1)

Extensive use of radio frequencies is crucial to

- Economic well-being
- National defense
- Homeland security

Radio spectrum can be polluted by interference from other radio sources

 Noise is radio frequency interference that does not come from an identifiable, intentional radiator

Three categories of radio noise:

- Natural (not man-made) environmental noise (e.g., lightning, ...)
- Interference from unintentional radiators (e.g., motors, lighting,)
- Aggregate out-of-band interference from intentional radiators

2013 Conference Summary (2)

Measurements

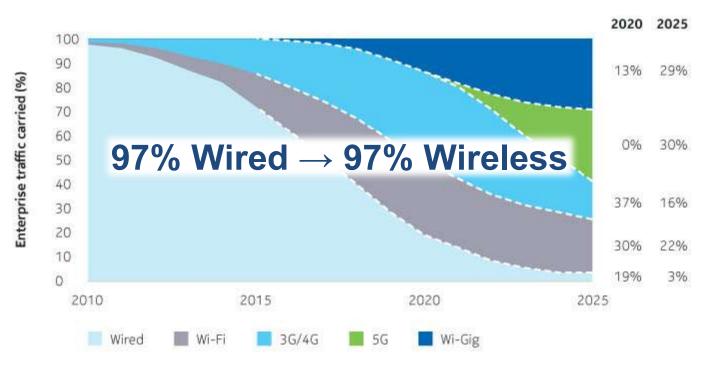
- We do not know how bad the problem is need more measurements and analysis.
- No standard methodology for measuring noise.
 - Bad measurements lead to bad data.
- The measurement process depends on what the researcher is seeking.
 - Report on measurements should be understandable and comprehensive.
- Measurements depend on the frequency range.
- Most important consideration is aggregate emissions.

2013 Conference Summary (3)

Takeaways

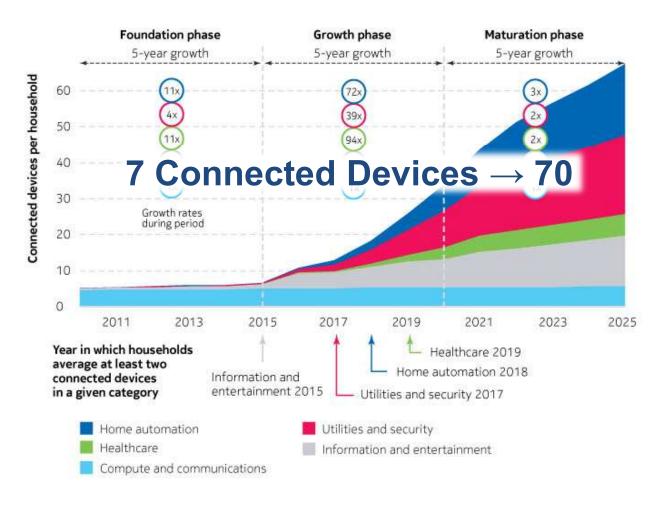
- Noise may not be the primary problem in the unlicensed domains
 - Competition among users for channel access may be the larger issue
- Scientific understanding of interference is eroding
 - Most interference complaints are anecdotal
- Carriers have a lot of interference data
 - Can carriers be encouraged to share data?
- Insufficient resources
 - The EPA has 6000 scientists the FCC has less than 2000 employees
 - Most FCC employees are not considered "critical" during gov't shutdowns
- Environmental models may not translate well to spectrum
 - Spectrum pollution is less visible to the public

2013 Conference Summary (4)


Takeaways (cont)

- Strong evidence suggests that the noise floor is rising in higher frequency bands
 - The scope of the problem is largely unknown because much evidence is anecdotal
 - What measurements do exist often lack transparency and are not systematic
- Need for systematic, transparent, and scientifically based measurements
- Radio spectrum noise pollution matters
 - e.g., Verizon values 600 MHz spectrum less than 700 MHz spectrum because of noise pollution
- Insufficient resources
 - The EPA has 6000 scientists the FCC has less than 2000 employees
 - Most FCC employees are not considered "critical" during government shutdowns
- Environmental models may not translate well to spectrum
 - Spectrum pollution is less visible to the public
- Non-intentional radiators are the biggest contributors to the noise floor

Outline


- Introduction
- 2013 ConferenceSummary
- Ten Years Later
- Examples and Impacts
- Recommendations

Shift from Wired to Wireless

Marcus K. Weldon, The Future X Network: A Bells Labs Perspective (2016)

Growth in Number of Wireless Devices

Marcus K. Weldon, The Future X Network: A Bells Labs Perspective (2016)

Socio-Technological Developments

Solar arrays

- Inverters produce extremely low-frequency interference
- NREL recommendations for array siting:
 - 150' from communications equipment; 250' from radar systems

Wind farms

- Three mechanisms for interference:
 - Radiation from generators and switching components
 - Diffraction of signals
 - Reflection/scattering

Electric Vehicles (EVs)

- Known interference up to and beyond HF and VHF bands
- EV charging infrastructure
- Satellites
 - Communications
 - Onboard electronics
- Internet of Things (IoT)

Outline

- Introduction
- 2013 ConferenceSummary
- Ten Years Later
- Examples & Impacts
- Recommendations

Some Anecdotes

RF noise pollution in Iraq

- Military facility in a small valley with initial population of 7,000
- Population grew to 35,000
- At ~15,000, military radar and communications began to be affected

Suburban expansion in California

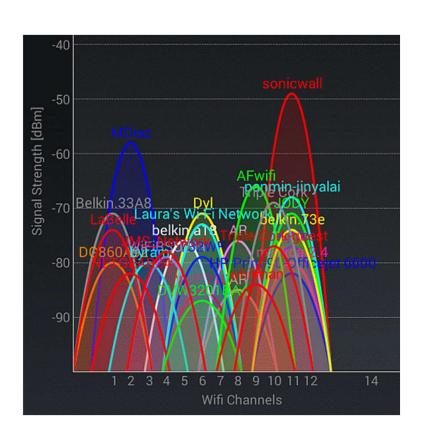
- Suburban expansion near Edwards Air Force Base
- RF noise pollution increased as suburbs closed on the base

Example: RF Noise Around the House

An enlightening exploration by Andy Clegg

https://www.youtube.com/watch?v=ewcemoXLzcU

Example: Bug Zapper



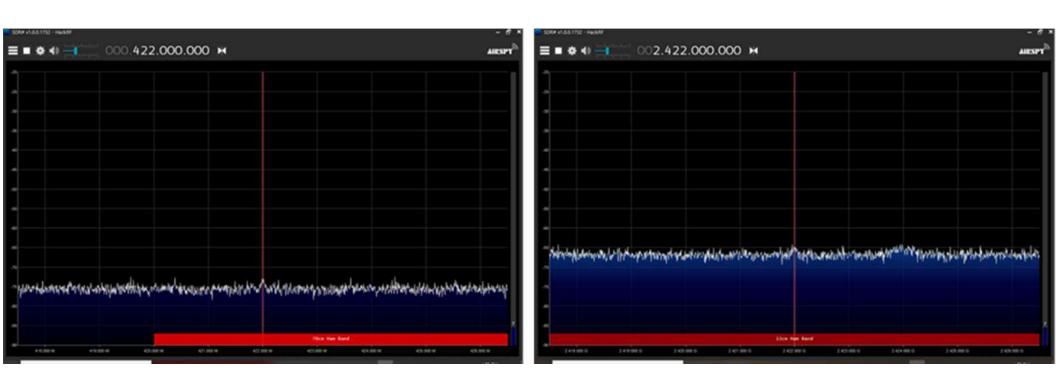
Each dot is an instance of a bug being electrocuted at HCRO

Source: Arvind Aradhya

Example: WiFi Congestion

One man's signal is another man's noise

Wi-Fi Congestion

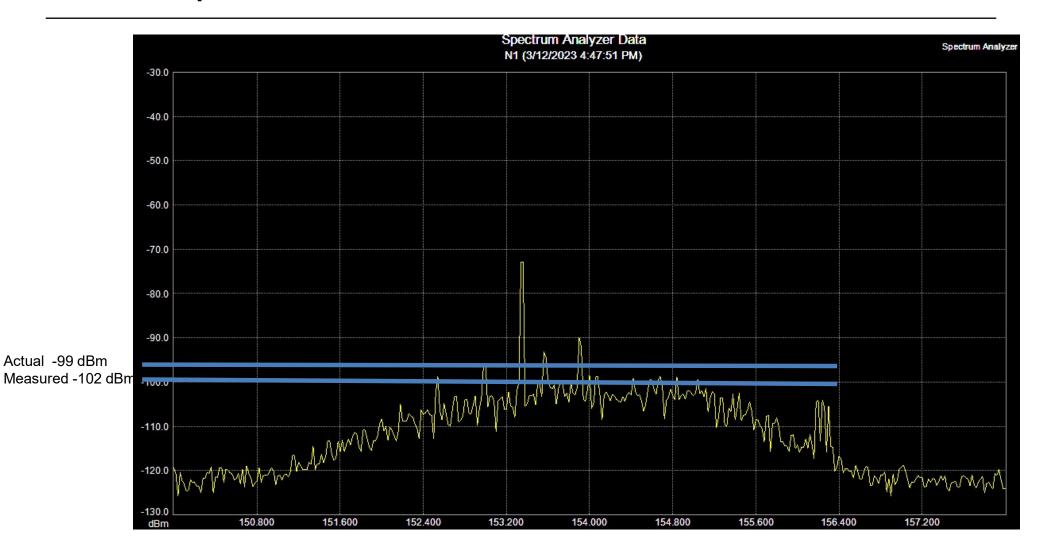

Cordless Phone

Microwave

Measured Power

Hotspots

Example: Ambient Suburban RF Noise


0.422 GHz 2.422 GHz

Samples taken with a commercial SDR at a suburban site south of Denver.

Scales are the same between graphs

Example: Ambient RF Noise Outside a Costco

Source: J. Blaschka, "Is VHF Dead?" Presentation at 2023 Silicon Flatirons Roundtable, The Challenges of Radio Spectrum Interference.

Services in Danger

Systems using HF and below are most vulnerable

- Radio-controlled clocks (in the U.S., WWVB signal at 60 kHz).
- Aeronautical and maritime LF beacons (~200 to 400 kHz)
- AM broadcast band (530 to 1700 kHz)
- Ham radio (125 to 29,700 kHz)
- Air traffic management on shortwave (118 to 132.45 MHz)
- Shortwave time services (i.e., WWV on 2.5, 5, 10, 15, and 20 MHz
- CB radio (26.965 to 27.405 MHz)
- Radio astronomy (particularly lower-frequency observations of pulsars and radio bursts)
- Lightning detection systems (<= 300 KHz)
- RFID (125 to 134 kHz, 13.56 MHz, 300 MHz to 3 GHz)
- Radio controlled (RC) systems (i.e., model planes, etc.) (27, 49, 50, 53 MHz)
- Avalanche transceivers (457 kHz)
- Navtex marine international broadcasts (518 kHz)

Outline

- Introduction
- 2013 ConferenceSummary
- Ten Years Later
- Examples & Impacts
- Recommendations

Recommendations

- Need a standardized method for measuring RF noise
 - Including comprehensive documentation
 - Scientific data vs anecdotes
 - Measurement and models for aggregate noise
 - Mechanisms for determining noise sources
- Need systematic measurement campaigns to establish RF noise floor and rate of growth
 - Coping with the number of sources and environments will require innovation
- Proactively develop standards, licensing rules, and regulations
 - E.g., receiver standards
- Make the results of RF noise pollution more understandable to the general public
 - RF frequency issues are invisible to the average user of wireless

Sources

- Association of Federal Communications Consulting Engineers, Ex Parte Presentations in ET 16-191 and RM-11779, April 13, 2017
- Clegg, A., "Radio Noise Around the House," https://www.youtube.com/watch?v=ewcemoXLzcU
- Cotton, M. G., Vu, L. P., Eales, B., Hicks, A., "3.45 3.65 Ghz Spectrum Occupancy from Long-Term Measurements in 2018 and 2019 at Four Coastal Sites," NTIA Technical Report TR-20-548, April 2020
- Frey, M., et al, "Measured Emission Spectra of Selected AWS-3 LTE Transmitters," NASCTN Report 4, December 2017
- McHenry, M. A., Roberson, D., and Matheson, R. J., "Phone to Fridge: Shut up!" IEEE Spectrum 52(9): 50-55 (2015)
- National Academies Press, "Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses." 2015
- Shared Spectrum Company, "General survey of radio frequency bands 30 MHz to 3 GHz," 2010
- Silicon Flatirons Conference Report, "Radio Spectrum Pollution: Facing the Challenge of a Threatened Resource," (2013)
- Silicon Flatirons Roundtable Report, "The Challenges of Radio Spectrum Pollution," (2023)

Questions?